Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Rajagopal, ${ }^{\text {a }}$ V. Tamilselvi, ${ }^{\text {c }}$

R. V. Krishnakumar ${ }^{\text {b }}$ and
S. Natarajan ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Physics, Saraswathi Narayanan College, Madurai 625 022, India, ${ }^{\text {b }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, and ${ }^{\mathbf{c}}$ Department of Physics,
Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail:
s_natarajan50@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.113$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Pyridinium oxalate(1-) oxalic acid dihydrate

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the pyridine molecule exists as a cation and the oxalic acid molecules as an oxalate $(1-)$ ion and a neutral oxalic acid. The structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in addition to carbonyl-carbonyl $\mathrm{O} \cdots \mathrm{C}$ short contacts and van der Waals interactions. The water molecules are also found to mediate interactions between oxalate ions and oxalic acid molecules through a number of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Pairs of pyridinium cations related by a center of inversion are surrounded by semi-oxalate anions and oxalic acid molecules, and the complex may be described as an inclusion compound.

Comment

The present study reports the crystal structure of pyridinium oxalate (1-) oxalic acid dihydrate, (I), as part of a series of investigations being carried out to observe conformational changes in carboxylic acid molecules and characteristic hydrogen-bonding patterns in their crystal structures.

(I)

Fig. 1 shows the molecular structure of (I) with the atomnumbering scheme. The pyridine molecule exists in the cationic form with a protonated ring N atom. One of the oxalic acid molecules is in the mono-ionized state, while the other molecule is in the unionized state. The oxalic acid molecule is more nearly planar [the largest displacements from the plane are 0.012 (2) \AA for O 1 and 0.011 (1) \AA for O 4 , both on the same side] than the oxalate $(1-)$ ion [the largest displacements

Figure 1

The molecular structure of (I), with the atom-numbering scheme and ellipsoids at the 50% probability level.

Received 7 April 2003
Accepted 24 April 2003
Online 9 May 2003

Figure 2
The packing of (I), viewed down the a axis.
from the plane are 0.017 (2) \AA for O 6 and 0.123 (2) \AA for O8, on opposite sides]. The geometric parameters of the pyridinium ion are in agreement with those of pyridinium ions in other structures, e.g. bisthiourea pyridinium bromide (Truter \& Vickery, 1972) and pyridinium dichloroiodide (Tucker \& Kroon, 1973). The $\mathrm{C}-\mathrm{C}$ bond lengths of the oxalic acid molecule and the oxalate $(1-)$ ion $[\mathrm{C} 7-\mathrm{C} 8=1.539$ (2) \AA and $\mathrm{C} 9-\mathrm{C} 10=1.544(2) \AA$] are longer than accepted values. Perhaps the abnormally long $\mathrm{C}-\mathrm{C}$ distance found in the oxalic acid molecule and oxalate ion can be justified by intramolecular $\mathrm{O} \cdots \mathrm{O}$ steric hindrance, shown by the following contacts: $\mathrm{O} 1 \cdots \mathrm{O} 3=2.682(2), \mathrm{O} 2 \cdots \mathrm{O} 4=2.626$ (2), $\mathrm{O} 5 \cdots \mathrm{O} 7=2.691(2)$ and $\mathrm{O} 6 \cdots \mathrm{O}=2.666(2) \AA$, all significantly shorter than the sum of the van der Waals radii of $3.04 \AA$ (Bondi, 1964). This steric interaction not only causes an enlargement of about $0.04 \AA$ of the $\mathrm{C}-\mathrm{C}$ central bond in both oxalic acid residues, but also some twisting of the two carboxylic acid groups about it; this twisting is significant only in the anion, as shown by the values of the torsion angles $\mathrm{O} 1-$ $\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 3=-0.5(2)^{\circ}$ and $\mathrm{O} 5-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 7=12.1(2)^{\circ}$. However, such large deviations in bond lengths are also observed in the case of oxalic acid dihydrate, with $\mathrm{C}-\mathrm{C}=$ $1.537 \AA$ (Ahmed \& Cruickshank, 1953), and in the crystal structures of anhydrous α - and β-oxalic acids, both with values of 1.537 (1) \AA (Derrissen \& Smith, 1974). A slight increase in the $\mathrm{C} 10-\mathrm{O} 7$ bond length $[1.264$ (2) \AA] compared to $\mathrm{C} 10-\mathrm{O} 8$ [1.231 (2) A] may be attributed to the participation of O7 in two hydrogen bonds and O 8 in only one hydrogen bond in the structure. The other geometrical parameters of the oxalic acid molecules are found to be in agreement with those of other similar structures (oxalic acid dihydrate, anhydrous α - and β oxalic acids, etc.).

Fig. 2 shows the packing pattern of (I), viewed down the a axis. The oxalate ($1-$) and oxalic acid residues and their inversion-related equivalents are linked along the diagonal of the $a c$ plane. Pyridinium ions link the oxalate ion layers through bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a characteristic three-dimensional aggregation pattern. One of the water molecules, O 10 acting as donor, mediates $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions with the oxalic acid residue. It is also involved in a short $\mathrm{C} \cdots \mathrm{O}$ contact, viz. $\mathrm{C} 8 \cdots \mathrm{O} 10(-x,-y, 1-z)=$ 3.002 (3) \AA. The other water molecule (O9) links the neutral oxalic acid molecules and the oxalate ions through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Short carbonyl-arbonyl contacts $[\mathrm{C} 7 \cdots \mathrm{O} 5=$ $3.004(4) \AA, \mathrm{C} 8 \cdots \mathrm{O} 5=2.995(3) \AA$ and $\mathrm{C} 8 \cdots \mathrm{O} 10(-x,-y$, $-z+1)=2.995(3) \AA$] are also observed (Allen et al., 1998). Thus the structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in addition to short contacts and van der Waals interactions. The complex can be described as an inclusion compound with the oxalate ($1-$) ion and oxalic acid molecule as hosts and the pyridinium ion as the guest.

Experimental

Colorless prismatic single crystals of (I) were obtained during an attempt to grow the complex of L-proline with oxalic acid, in the presence of a few drops of pyridine, from a saturated aqueous solution containing proline and oxalic acid in a $1: 1$ stoichiometric ratio. Unexpectedly, instead of L-prolinium oxalate, only the title compound, (I), was obtained.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=295.20$
Triclinic, $P \overline{1}$
$a=6.992$ (7) \AA
$b=9.539(2) \AA$
$c=10.098$ (2) \AA
$\alpha=84.36(2)^{\circ}$
$\beta=79.54(4)^{\circ}$
$\gamma=74.71(6)^{\circ}$
$V=638.0(7) \AA^{3}$
$Z=2$
$D_{x}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.948, T_{\text {max }}=0.971$
2451 measured reflections
2250 independent reflections 1946 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.113$
$S=1.09$
2250 reflections
198 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{m}=1.55 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of xylene and bromoform Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.0-25.0^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.40 \times 0.35 \times 0.17 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.006 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 8 \\
& k=-10 \rightarrow 11 \\
& l=-11 \rightarrow 11 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: }<1 \%
\end{aligned}
$$

[^0]Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

O1-C7	$1.201(2)$	O8-C10	$1.231(2)$
O2-C7	$1.294(2)$	N1-C6	$1.315(2)$
O3-C8	$1.283(2)$	N1-C2	$1.336(2)$
O4-C8	$1.212(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.365(3)$
O5-C9	$1.209(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.365(3)$
O6-C9	$1.297(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(3)$
O7-C10	$1.264(2)$		
			$112.7(1)$
C6-N1-C2	$122.9(2)$	O3-C8-C7	$125.8(1)$
N1-C2-C3	$119.2(2)$	O5-C9-O6	$121.3(1)$
O1-C7-O2	$126.3(1)$	O5-C9-C10	$112.8(1)$
O1-C7-C8	$122.4(1)$	O6-C9-C10	$127.0(1)$
O2-C7-C8	$111.3(1)$	O8-C10-O7	$119.4(1)$
O4-C8-O3	$127.0(1)$	O8-C10-C9	$113.6(1)$
O4-C8-C7	$120.3(1)$	O7-C10-C9	
			$-179.7(1)$
C6-N1-C2-C3	$0.3(3)$	O2-C7-C8-O3	$-167.5(2)$
N1-C2-C3-C4	$-0.6(3)$	O5-C9-C10-O8	$11.9(2)$
O1-C7-C8-O4	$178.0(2)$	O6-C9-C10-O8	$12.1(2)$
O2-C7-C8-O4	$-1.3(2)$	O5-C9-C10-O7	$-168.5(1)$
O1-C7-C8-O3	$-0.5(2)$	O6-C9-C10-O7	

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 9$	0.82	1.80	2.592 (3)	161
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 7^{\mathrm{i}}$	0.82	1.67	2.486 (2)	174
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 10^{\text {ii }}$	0.82	1.82	2.626 (2)	166
$\mathrm{O} 9-\mathrm{H} 7 \cdots \mathrm{O} 8^{\text {iii }}$	0.88 (2)	1.85 (2)	2.735 (2)	176 (2)
$\mathrm{O} 9-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {iv }}$	0.81 (3)	1.99 (3)	2.802 (2)	179 (3)
$\mathrm{O} 10-\mathrm{H} 9 \cdots \mathrm{O}^{\text {v }}$	0.90 (2)	1.92 (2)	2.811 (2)	171 (2)
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 9^{\text {ii }}$	0.83 (3)	2.07 (3)	2.897 (2)	173 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {vi }}$	0.86	2.13	2.889 (2)	147
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {vi }}$	0.86	2.25	2.934 (2)	137

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii) $1-x,-y,-z$; (iv) $1-x,-1-y,-z$; (v) $x, y, 1+z$; (vi) $x, 1+y, z$.

All the H atoms, except those of the water molecules, were positioned geometrically and were allowed to ride on their respective parent atoms. The water H atoms were located in a difference Fourier map and allowed to refine isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

KR thanks the UGC and Mr N. Thiagarajan, Secretary, S. N. College, for the FIP program. The authors thank the UGC for the DRS program and the Bio-informatics Centre, Madurai Kamaraj University, for providing access to the Cambridge Structural Database (Allen, 2002).

References

Ahmed, F. R. \& Cruickshank, D. W. J. (1953). Acta Cryst. 6, 385-392.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. \& Raithby, P. R. (1998). Acta Cryst. B54, 320-329.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Derissen, J. L. \& Smith, P. H. (1974). Acta Cryst. B30, 2240-2242.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Truter, M. R. \& Vickery, B. L. (1972). Acta Cryst. B28, 387-393.
Tucker, P. A. \& Kroon, P. A. (1973). Acta Cryst. B29, 2967-2968.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0645 P)^{2}\right.$ $+0.1652 P]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.26 \mathrm{e}_{\AA^{-3}}$
 $\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.017 (5)

